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Current experimental evidence supports the picture of three charged leptons 
(e+-,lt+-,z+-), a triplet with mass splitting that bears a resemblance to the 
Gell-Marm-Okubo form. To elucidate the overall mass scale, a charged lepton 
is viewed as a mass point that engenders a local Reissner-Nordstrom space- 
time geometry, and the Einstein-Maxwell action is evaluated through an 
invariant space-time region associated with the particle's radiation reaction 
interval 2e2/3ra. What emerge for the electron, muon, and tau are values of the 
Einstein-Maxwell action in the neighborhood of h. The mean value of the three 
action integrals is .4==(140.93)e2=(l.0284)h, and thus the apparent quantum 
condition ,,T~h sets the mass scale for the three charged leptons. 

The mass ratios for the electron, muon ,  a nd  tau are given by  the 

semitheoretical  fo rmula  (Nambu ,  1952; Rosen, 1964; Barut, 1979) 

3 m = m e + hP e I F =  me(1 + ~ c r  (1) 

where m e is the mass of the electron, ~e = 2 e 2 / 3 m e  is the classical rad ia t ion  
react ion interval  (Dirac, 1938), and  the q u a n t u m  n u m b e r  F has the values 

Fe =0 .  F ,  = 1. F. = 17 (2) 

Now k n o w n  rather accurately up to 30 GeV, the e + - e -  total  cross section 
appears to preclude existence of any  addi t ional  heavier charged leptons 
(Perl, 1979). Assuming  that  the charged leptons are jus t  three in  n u m b e r  
and  const i tute  a triplet, one  can  in t roduce an  operator  T 3 with eigenvalues 
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+ 1, O, - 1  and eigenstates identified with the physical particles: 

r3le )=O, (3) 

Then the mass operator which yields (1) with (2) follows by setting 

F = [  I + ( T 3 +  I)4]T~,  (4) 

a form somewhat suggestive of Ge l l -Mann-Okubo  splitting, where T 3 
may be interpreted as the third component of "leptospin." What is particu- 
larly noteworthy regarding formula (1) with (4) is that the lepton mass 
splitting is given exclusively in terms of the quantum electrodynamics 
constant a, notwithstanding the fact that the leptons are coupled to 
hadrons (or quarks) via the electromagnetic and weak interactions. How- 
ever, because m e must be prescribed empirically, the overall mass scale for 
the charged leptons is not fixed by formula (1) 1. 

Since experiments show the electron to be essentially pointlike and 
without measurable spatial extension on a millifermi scale, the classical 
Einstein-Maxwell field theory for an electrically charged mass point may 
in fact apply in a correspondence sense to the electron, the muon, and the 
tau. That  is, in the neighborhood of a charged lepton at rest the local 
Riemannian-space-time geometry is given by the Reissner-Nordstr6m line 
element (units such that c = 1) 2 

ds 2 = - a ( d t )  2 + a - ' ( d r )  2 + r2[ (dO) z + sinZO(dq) 2 ] (s) 

where ~2 _---- 1 - 2 Gmr - ~ + Ge2r - 2 with G = 6.673( _ 0.003) X 10- 8 cm 3 g -  l 
sec -2 denoting Newton's constant and e denoting the observable unit of 
electric charge. Because G l / 2 m / e  is less than or of the order 10-18 for the 

l i t  is quite possible that the mean mass of the charged leptons can be computed in a 
perturbation-theoretic manner from QED with bare-mass zero and a quantum-gravitational 
cutoff (e.g., Fryberger, 1979; Rosen, 1971). Nevertheless, it is not uncommon for fundamen- 
tal phenomena in the quantum domain to admit manifestly different but independently 
correct descriptions, which later appear to be compatible or equivalent in the context of 
deeper theory. This, and the need for an alternative (nonperturbative) approach to the 
self-mass problem, justifies the consideration of the Reissner-Nordstr/~m solution in the 
present communication. That QED itself actually admits application of the correspondence 
principle to the lepton self-mass problem has in fact been shown by Fomin (1976). 

2The space-time coordinates used here are of direct geometrical significance (Rosen, 1962), 
and therefore have an immediate observational meaning. In particular, t is the time 
measured by a clock at rest far from the charged mass-point, and r is given at any point in 
terms of the local Ricci curvature quadratic invariant: �89 Ge2r -4. 



Correspondence-Principle Condition for Charged Leptans 559 

masses of interest, one has 3 

f] = 1 + Ge2r-2 

with the Schwarzschild term trivial in relative magnitude for all r. The 
electromagnetic field has the nonvanishing radial component f01 = - f l o  = 

er -2 (Weyl, 1922; index notation: x0= t, x I = r), and thus from (5) 

g~g~'f,J~o= - 2e2 r  -4 (7) 

Consider the stationary value of the Einstein-Maxwell action 

1 
A=---i-6~ ~ f ( G-~R-g~g~f~f~o)(-g) ' /2d4x (8) 

for (5) with G t = f dx o = 2~rr~2-~/2, the coordinate time interval for light to 

travel around a circle of constant radius r [according to (5) with ds 2-- 0], 
and r<<.~2e2/3m, corresponding to a spherical spatial region of radius 4 
equal to the particle's radiation reaction interval. Because the scalar 
curvature R =0  for all r > 0  and A t  is asymptotic to 2~rG - l / 2 e - l r  2 a s  r---~0 
(giving R A t = 0 for all r/> 0, in spite of the 6 function singularity in R at 
r = 0) it follows by putting (5)-(7) into (8) that 

A = e2r-4)(2~rra - ~/2)(4~rr2dr) (9) 

=~re2 fo (r2+ Ge2)-l/2dr=Tre2(ln[(l +G-le-2p2) 1/2 

+ G-1/Ze-l~]} =rre2[ln(2G-1/2e-Ip)+ O(GeV-Z)] 

Since Ge2~ - 2  is less than or of the order 10 - 3 6  for the leptons, the final 
member of (9) yields 

A = qre2[ l n (4e /3G I/2m) ] 

f 155.055e for the electron with m=0.5110034 MeV 
= 138.305e 2 for the muon with m = 105.6595 MeV 

129.429e 2 for the tau with 5 m = 1782 MeV 
(lO) 

3Of course the Schwarzchild term 2Gmr-1 cannot  be dropped for all r in the Christoffel 
symbols  and  associated curvature tensors, and  (6) can only be used in algebraic expresions 
that involve the metric tensor. 

4From the line element (5) it follows that  the observable proper radius is ~ s =  f;o f i -  1/2dr= ~, 
with omission of a numerically trivial term (relative order 10 -18 or less for the leptons). 

5Tau mass  value according to Perl (1979). 
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The accuracy of the A values in (10) for the electron and muon is limited 
by the experimental uncertainty in G, which produces a systematic 8A----- 
___ 7 • 10-4e 2. All of the values in (10) are in the neighborhood of h, and 
the mean value of the three action integrals is precisely 

A=(140.93)eZ=(1.O284)h (11) 

As shown empirically by (11), the correspondence-principle condition 
. 4 ~ h  serves to fix the mass scale for the leptons. Notice that the condition 
A ~f i  would still obtain if P in (9) were set equal to either e2/m or e2/2m 
(rather than 2e2/3m) because of the insensitivity of the logarithm. 

The apparent quantum condition A ~ h  should be derivable in a future 
theory, along with the leptonic mass splitting shown in (1). In the Feynman 
path integral quantization of Einstein-Maxwell theory, the action (8) 
enters through the amplitude factor (exp iA/h), and it was pointed out 
many years ago (Wheeler, 1954) that field histories with A~h interfere 
constructively in the Feynman sum and can make a dominant contribution 
to the probability amplitude for time evolution of the state. To achieve 
correspondence-principle agreement, the action must be evaluated for the 
Reissner-Nordstrrm solution through an invariant space-time region 
associated with the particle's radiation reaction interval P=2e2/3m, as 
carried out in (9). Presumably as a residue of this, Pe appears in the mass 
splitting formula (1). 
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